Random Graphs
 Exercise Sheet 6

Question 1. Suppose we flip n biased coins, each which land heads with probability p and tails with probability $1-p$, independently of the others. Let X be the number of heads flipped, let Z_{i} be the result of the i th coin flip and consider the martingale given by $X_{i}=\mathbb{E}\left(X \mid \sigma\left(Z_{1}, \ldots, Z_{i}\right)\right)$. Using the Azuma-Hoeffding inequality bound, for any $t \geq 0$, the probability

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq t)
$$

Compare this to the Chernoff bounds.
Question 2. Let $A \subseteq\{0,1\}^{n}$ have size $\epsilon 2^{n}$ and let λ be such that $\exp \left(-\frac{\lambda^{2}}{2}\right)=\epsilon$. Show that all but $\epsilon 2^{n}$ points in $\{0,1\}^{n}$ are at Hamming distance at most $2 \lambda \sqrt{n}$ from A.
(Hint: The Hamming distance is a 1 -Lipschitz function on $\{0,1\}^{n}$)
Question 3. Let p be fixed, $\varepsilon>0, b=\frac{1}{1-p}$ and let $k=(2-\varepsilon) \log _{b} n$. Let Y be the largest size of a collection of 'edge-disjoint' independent sets of size k in $G_{n, p}$ and let \mathcal{K} be the collection of all independent sets of size k in $G_{n, p}$. By choosing a random subset of \mathcal{K} and using the alteration method, show that

$$
\mathbb{E}(Y) \geq(1+o(1)) p(1-p) \frac{n^{2}}{k^{4}}
$$

Deduce that

$$
\mathbb{P}\left(\alpha\left(G_{n, p}\right)<k\right) \leq e^{-\tilde{\Omega}\left(n^{2}\right)},
$$

where $\tilde{\Omega}$ means up to polylog factors.
Question 4. Suppose we generate a configuration F on a set W of $2 m$ points via the procedure from the lecture - We sequentially choose an unmatched vertex x (according to some arbitrary rule, which might depend on the history of the procedure) and then choose an unmatched vertex y uniformly at random and add the pair $\{x, y\}$ to F. Show that this produces a uniformly random configuration.

Let $H \in \mathcal{G}_{n, \bar{d}}$ have exactly r parallel edges and t loops. Determine the probability that $G^{*}(n, \bar{d})=H$.
Question 5. Given $k \in \mathbb{N}$ the random k-out graph is generated by choosing independently and uniformly for each vertex $v \in[n]$ a set of k neighbours. Show that for $k \geq 3$ this graph is whp connected.
(* What about for $k \leq 2$?)
Question 6. Let r be sufficiently large. Suppose we pick r perfect matchings $M_{1}, M_{2}, \ldots, M_{r}$ on the vertex set $[n]$ and consider the r-regular (multi-)graph G whose edge set is given by $\bigcup M_{i}$.

Show that there exists a constant α_{r} such that whp $e_{G}(S,[n] \backslash S) \geq \alpha_{r}|S|$ for every subset $S \subseteq[n]$ of size $|S| \leq \frac{n}{2}$.

